3.75 \(\int \frac {1+x+x^2}{x^3 (1+x^2)^2} \, dx\)

Optimal. Leaf size=45 \[ -\frac {x}{2 \left (x^2+1\right )}-\frac {1}{2 x^2}+\frac {1}{2} \log \left (x^2+1\right )-\frac {1}{x}-\log (x)-\frac {3}{2} \tan ^{-1}(x) \]

[Out]

-1/2/x^2-1/x-1/2*x/(x^2+1)-3/2*arctan(x)-ln(x)+1/2*ln(x^2+1)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 45, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {1805, 1802, 635, 203, 260} \[ -\frac {x}{2 \left (x^2+1\right )}-\frac {1}{2 x^2}+\frac {1}{2} \log \left (x^2+1\right )-\frac {1}{x}-\log (x)-\frac {3}{2} \tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 + x + x^2)/(x^3*(1 + x^2)^2),x]

[Out]

-1/(2*x^2) - x^(-1) - x/(2*(1 + x^2)) - (3*ArcTan[x])/2 - Log[x] + Log[1 + x^2]/2

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 1802

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x
^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 1805

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
 a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[((a*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*
(p + 1)), Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x],
 x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1+x+x^2}{x^3 \left (1+x^2\right )^2} \, dx &=-\frac {x}{2 \left (1+x^2\right )}-\frac {1}{2} \int \frac {-2-2 x+x^3}{x^3 \left (1+x^2\right )} \, dx\\ &=-\frac {x}{2 \left (1+x^2\right )}-\frac {1}{2} \int \left (-\frac {2}{x^3}-\frac {2}{x^2}+\frac {2}{x}+\frac {3-2 x}{1+x^2}\right ) \, dx\\ &=-\frac {1}{2 x^2}-\frac {1}{x}-\frac {x}{2 \left (1+x^2\right )}-\log (x)-\frac {1}{2} \int \frac {3-2 x}{1+x^2} \, dx\\ &=-\frac {1}{2 x^2}-\frac {1}{x}-\frac {x}{2 \left (1+x^2\right )}-\log (x)-\frac {3}{2} \int \frac {1}{1+x^2} \, dx+\int \frac {x}{1+x^2} \, dx\\ &=-\frac {1}{2 x^2}-\frac {1}{x}-\frac {x}{2 \left (1+x^2\right )}-\frac {3}{2} \tan ^{-1}(x)-\log (x)+\frac {1}{2} \log \left (1+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 39, normalized size = 0.87 \[ \frac {1}{2} \left (-\frac {x}{x^2+1}-\frac {1}{x^2}+\log \left (x^2+1\right )-\frac {2}{x}-2 \log (x)-3 \tan ^{-1}(x)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x + x^2)/(x^3*(1 + x^2)^2),x]

[Out]

(-x^(-2) - 2/x - x/(1 + x^2) - 3*ArcTan[x] - 2*Log[x] + Log[1 + x^2])/2

________________________________________________________________________________________

fricas [A]  time = 1.07, size = 61, normalized size = 1.36 \[ -\frac {3 \, x^{3} + x^{2} + 3 \, {\left (x^{4} + x^{2}\right )} \arctan \relax (x) - {\left (x^{4} + x^{2}\right )} \log \left (x^{2} + 1\right ) + 2 \, {\left (x^{4} + x^{2}\right )} \log \relax (x) + 2 \, x + 1}{2 \, {\left (x^{4} + x^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+x+1)/x^3/(x^2+1)^2,x, algorithm="fricas")

[Out]

-1/2*(3*x^3 + x^2 + 3*(x^4 + x^2)*arctan(x) - (x^4 + x^2)*log(x^2 + 1) + 2*(x^4 + x^2)*log(x) + 2*x + 1)/(x^4
+ x^2)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 43, normalized size = 0.96 \[ -\frac {3 \, x^{3} + x^{2} + 2 \, x + 1}{2 \, {\left (x^{2} + 1\right )} x^{2}} - \frac {3}{2} \, \arctan \relax (x) + \frac {1}{2} \, \log \left (x^{2} + 1\right ) - \log \left ({\left | x \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+x+1)/x^3/(x^2+1)^2,x, algorithm="giac")

[Out]

-1/2*(3*x^3 + x^2 + 2*x + 1)/((x^2 + 1)*x^2) - 3/2*arctan(x) + 1/2*log(x^2 + 1) - log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 38, normalized size = 0.84 \[ -\frac {x}{2 \left (x^{2}+1\right )}-\frac {3 \arctan \relax (x )}{2}-\ln \relax (x )+\frac {\ln \left (x^{2}+1\right )}{2}-\frac {1}{x}-\frac {1}{2 x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+x+1)/x^3/(x^2+1)^2,x)

[Out]

-1/2/x^2-1/x-1/2/(x^2+1)*x-3/2*arctan(x)-ln(x)+1/2*ln(x^2+1)

________________________________________________________________________________________

maxima [A]  time = 0.97, size = 41, normalized size = 0.91 \[ -\frac {3 \, x^{3} + x^{2} + 2 \, x + 1}{2 \, {\left (x^{4} + x^{2}\right )}} - \frac {3}{2} \, \arctan \relax (x) + \frac {1}{2} \, \log \left (x^{2} + 1\right ) - \log \relax (x) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+x+1)/x^3/(x^2+1)^2,x, algorithm="maxima")

[Out]

-1/2*(3*x^3 + x^2 + 2*x + 1)/(x^4 + x^2) - 3/2*arctan(x) + 1/2*log(x^2 + 1) - log(x)

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 47, normalized size = 1.04 \[ -\ln \relax (x)-\frac {\frac {3\,x^3}{2}+\frac {x^2}{2}+x+\frac {1}{2}}{x^4+x^2}+\ln \left (x-\mathrm {i}\right )\,\left (\frac {1}{2}+\frac {3}{4}{}\mathrm {i}\right )+\ln \left (x+1{}\mathrm {i}\right )\,\left (\frac {1}{2}-\frac {3}{4}{}\mathrm {i}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x + x^2 + 1)/(x^3*(x^2 + 1)^2),x)

[Out]

log(x - 1i)*(1/2 + 3i/4) + log(x + 1i)*(1/2 - 3i/4) - log(x) - (x + x^2/2 + (3*x^3)/2 + 1/2)/(x^2 + x^4)

________________________________________________________________________________________

sympy [A]  time = 0.18, size = 42, normalized size = 0.93 \[ - \log {\relax (x )} + \frac {\log {\left (x^{2} + 1 \right )}}{2} - \frac {3 \operatorname {atan}{\relax (x )}}{2} + \frac {- 3 x^{3} - x^{2} - 2 x - 1}{2 x^{4} + 2 x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+x+1)/x**3/(x**2+1)**2,x)

[Out]

-log(x) + log(x**2 + 1)/2 - 3*atan(x)/2 + (-3*x**3 - x**2 - 2*x - 1)/(2*x**4 + 2*x**2)

________________________________________________________________________________________